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Abstract— In this work, we introduce a novel Dynamical
System (DS)-based approach for modeling complex and com-
pliant manipulation tasks, that are composed of a sequence
of action phases with different compliance requirements; i.e.
impedance primitives. We adopt a closed-loop (DS)-based control
architecture and present the Locally Active Globally Stable
(LAGS)-DS formulation. In LAGS-DS we seek to model the
whole task as a globally asymptotically stable DS that has
locally task-varying dynamics and smoothly transit between
them. These locally task-varying dynamics represent the set of
impedance primitives, hence, rather than modeling the task
as a discretization of impedance primitives, we model it as
a composition of impedance primitives in a single DS-based
controller. In this paper, we present the theoretical background
for this novel DS, briefly describe the learning approach and
provide 2D simulations of LAGS-DS learned from toy data.

I. INTRODUCTION

In this work, we seek to tackle the problem of modeling

complex and compliant manipulation tasks from demon-

strations. A complex manipulation task, is one that can

be decomposed into a sequence of action phases that are

executed to reach a high-level goal. On the other hand, a

compliant manipulation task is one that deals with controlling

for interaction between the robot and the environment, be it

an obstacle, a surface or a perturbation from a human. Thus, a

complex and compliant manipulation task is one that has not

only more than one action phase but also requires different

levels of compliance for each phase, as shown in Fig. 1.

These illustrations show examples of complex compliant

tasks with a point-mass (representing the end-effector of a

robot), a sample trajectory and a final target (the star). The

shaded areas indicate the phases in each task where the robot

must precisely follow the reference trajectory. Beside these

illustrations we show the targeted applications that exhibit

this type of compliant behavior.

Learning this type of complex and compliant behavior

is a key challenge in the robotics community as it is

exhibited in many real-world manipulation tasks, such as: (1)

reaching-for/grasping/lifting an object, (2) wiping a surface,

(3) sliding on a surface, (4) painting a surface, (5) peeling

vegetables, among others. Our goal is thus to propose a

unified framework for learning such complex and compliant

manipulation tasks from demonstrations while reproducing

them in a passive and reactive manner. Previous works in this
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Fig. 1: Examples of Complex Compliant Manipulation tasks.

(left column) 2D Illustrations of a Point that represents the end-effector of the

robot. The star is the final target, while gray areas represent surfaces/obstacles. The

background shading indicates different levels of compliance in the task, lighter being

more compliant and viceversa. (right column) Corresponding real-world applications;

i.e. wiping a surface or inserting objects in a rack.

domain generally follow a discretization approach. Namely,

the complete task is initially segmented into discrete point-

to-point action phases [1], [2], [3]. Each action phase is then

represented by a corresponding motion generator, together

with a learned impedance/force profile if the action phase

requires it, as is done in [4], [5], [6] where the motion

generators are represented by time-invariant Dynamical Sys-

tems (DS). Finally, to execute the complete task one then

uses a switching architecture to parametrize an impedance

(or hybrid force/impedance) controller [7] with the corre-

sponding motion generator and stiffness/force requirements

of each action phase. An alternative to this approach is to

learn time/phase-dependent profiles that adapt across the task

for a given time-dependent reference trajectory as in [8], [9].

However, due to their ability to generate on-line motion plans

robust to changes in dynamic environments, in this work

we focus on motion generators represented as a first-order,

autonomous DS describing a nominal motion plan, such that,

ξ̇ = f(ξ) →
{

limt→∞‖ξ − ξ∗‖= 0 (1)

where f(·) : R
M → R

M is a continuous differentiable

vector-valued function representing a non-linear DS that

converges to a single stable equilibrium point ξ∗; i.e. target or

attractor. Historically, the use DS to represent motion plans

for discrete action phases is referred to as motion primitives

[10]. In this work, we extend the notion of motion primitives

to impedance primitives which refer to these independent DS

with corresponding/changing impedance requirements.

This current approach of switching across impedance

primitives, although successful in autonomously executing

the complete task, cannot ensure passivity and reactivity



if the human decides to interfere or aid/modify the task.

This is due to the fact that the individual DS encoded for

each action phase are simply used as open-loop motion

generators. To provide such interactive properties during

execution we refrain from classical impedance control and

instead adopt a closed-loop dynamical system (DS)-based

control architecture, as the one proposed in [11], which

we will herein refer to as the passive-DS controller. This

controller combines the advantages of impedance control and

a passive control system while avoiding any time-dependent

reference trajectory or profile. This is achieved by encoding

the nominal motion plan through an autonomous DS and

allowing for varying damping through a passive velocity

feedback control law. This control law ensures passivity and

is formulated in such a way that one can intuitively tune the

desired robot impedance.

Interestingly, if one is capable of encoding the set of

impedance primitives in a single DS, through the passive-

DS control architecture, we can avoid switching altogether.

This paper focuses on designing such a dynamical system

which we currently refer to as the Locally Active Globally

Stable (LAGS)-DS. In LAGS-DS we seek to model the

whole task as a globally asymptotically stable DS that has

locally task-varying dynamics and smoothly transit between

them. These locally task-varying dynamics represent the

set of impedance primitives, hence, rather than modeling

the task as a discretization of impedance primitives, we

model it as a composition of impedance primitives in a

single DS-based controller.

II. PRELIMINARIES

A. Robot Rigid Body Dynamics

We begin by assuming that the physics of an N -DOF

manipulator is accurately described by the rigid-body form:

M(q)q̈ +B(q, q̇) + g(q) = τc + τe (2)

where q, q̇, q̈ ∈ R
N represent joint positions, velocities

and accelerations. M(q) ∈ R
N×N corresponds to inertia

and force matrices and B(q, q̇),g(q) ∈ R
N correspond

to th Coriolis/centrifugal and the gravitational force vector,

respectively. Finally, τc, τe ∈ R
N indicate the control and

external torques in joint-space, respectively. Following [12],

(2) can be re-formulated in Cartesian task-space coordinates:

Mξ(ξ)ξ̈ +Bξ(ξ, ξ̇) + gξ(ξ) = uc + ue (3)

where ξ ∈ R
M is a generalized kinematic state variable in

task-space1, consequently ξ̇, ξ̈ ∈ R
M indicate their velocities

and accelerations. The inertia matrix in task-space M(ξ) ∈
R

M×M is given by Mξ(ξ) = J(q)−TM(q)J(q) and

the vector of centrifugal/coriolis and gravity force vectors

Bξ(·),gξ(ξ) ∈ R
M are given by Bξ(·) = J(q)−TB(q, q̇)−

M(ξ)J̇(q)q̇ and gξ(ξ) = J(q)−Tg(q); where J(q) ∈
R

M×N represents the manipulators Jacobian which projects

joint-space velocities to task-space as ξ̇ = J(q)q̇. Finally,

the control and external forces, ue,uc ∈ R
M , are given

1M = 3 for position or M = 6 full end-effector pose.

by the desired task-space controller and interaction forces,

respectively. These are transposed to joint-space with the

following relationships τ c = J(q)Tuc and τ e = J(q)Tue.

B. Passive-DS Controller

The passive-DS controller proposed in [11] generates a

control signal uc that tracks a desired velocity via the

nominal motion plan f(ξ) while ensuring stable interaction

with a passive environment. This is achieved through the

following negative velocity error feedback control law:

uc = −D(ξ)(ξ̇ − f(ξ)). (4)

To analyze the closed loop dynamics of (3) under control (4),

we begin by expanding the right-hand side of (3) as follows,

Mξ(ξ)ξ̈ +Bξ(ξ, ξ̇) + gξ(ξ) = uc + ui + ue (5)

where ui ∈ R
M is a vector of inverse dynamics forces.

Without loss of generality, by assuming that ui compensates

for centrifugal and gravity forces; i.e. ui = Bξ(ξ, ξ̇)+gξ(ξ),
the closed-loop dynamics of the controlled system are,

Mξ(ξ)ξ̈ +D(ξ)(ξ̇ − f(ξ)) = ue (6)

This resulting closed-loop system is passive with respect to

the input-output pair (ue, ξ̇) and can track the desired motion

plan f(ξ) while dissipating kinetic energy in directions

orthogonal to it. Following the derivations and proofs in [11],

these properties hold, if the following conditions are met:

1) The state-varying damping matrix should be positive

semi-definite and is defined as,

D(ξ) = Q(ξ)ΛQ(ξ)T (7)

where Λ ∈ R
M×M is a diagonal matrix of non-

negative values and Q(ξ) ∈ R
M×M is a matrix whose

columns correspond to the vectors in an orthonormal

basis E = {e1, · · · , eM} for ei ∈ R
M , which is

constructed such that e1 = f(ξ)
||f(ξ)|| follows the direction

of the desired motion and the remaining elements in

the set are mutually orthogonal and normalized vectors.

2) The motion plan f(ξ) must have a conservative com-

ponent; i.e. fC(ξ) = −∇Vf (ξ) where f(ξ) = fC(ξ) +
fC̄(ξ) and fC̄(ξ) is the non-conservative component.

C. Compliance Tuning with Passive-DS

Following we relate the passive-DS control-law to the

classical impedance control terms.

1) On Damping: The apparent damping Da(ξ) ∈ R
M×M

of the controlled system (6) can be computed as,

Da(ξ) =
∂ue

∂ξ̇
= D(ξ) (8)

As can be seen, the apparent damping Da(ξ) is equivalent to

the damping term used in our control law (4), as in the clas-

sical impedance control formulation [7]. Hence, the diagonal

elements of Λ in (7), i.e. the eigenvalues λ1, . . . , λM are the

desired damping values in all possible directions of motion.



Fig. 2: Examples of a DS motion plan with (left) no stiffness-like
behavior [simulation-link-1] and with (right) stiffness-like behavior
around the reference trajectory. [simulation-link-2]

Via the construction of D(ξ) defined in the first condition

of Sec. II-B, (4) becomes:

uc = −D(ξ)ξ̇ + λ1f(ξ), (9)

where λ1 corresponds to the first eigenvalue of D(ξ) and acts

as a control gain for the desired motion, while the remaining

eigenvalues represent how much deviation from the desired

motion plan f(ξ) is allowed when the robotic system is

subject to external forces coming from the environment or

a human interacting with it. The equivalence of (9) to (4)

results from the fact that f(ξ) is the first eigenvector of D(ξ).
2) On Stiffness: The apparent stiffness Ka(ξ) ∈ R

M×M

of the controlled system (6) has a less straightforward

manifestation than the damping term as it is computed by,

Ka(ξ) =
∂ue

∂ξ
= −D(ξ)

∂f(ξ)

∂ξ
. (10)

As shown, the classical notion of stiffness in our controller

is dependent not only on the damping term D(ξ), but also

on the properties of the DS, specifically its convergence rate

represented by the Jacobian
∂f(ξ)
∂ξ

. As derived in [13], the

stiffness in a particular direction Ka|s(ξ, ξs), i.e. at state ξ

with unit norm direction ξs, can be estimated as follows,

Ka|s(ξ, ξs) = ξTs Ka(ξ)ξs = −D(ξ)ξTs
∂f(ξ)

∂ξ
ξs. (11)

To summarize, the desired impedance behavior is encoded

through the state-dependent continuous function D(ξ) ∈
R

M×M which defines the desired damping of the robot

while executing the DS f(ξ). This is shown in the (left)

illustration of Fig. 2 and the provided simulation video,

where the passive-DS control architecture is being executed

with a DS f(ξ) shaped from a reference trajectory (red lines).

Such parametrization, however, is not sufficient to encode

a symmetrically converging behavior along the reference

trajectory, as in the classical notion of stiffness attraction. To

encapsulate such converging behavior, it should be encoded

within the DS itself, as shown in the (right) illustration of

Fig. 2 and the provided simulation video. This type of DS

representation is seldom in literature. Hence, in this paper we

introduce LAGS-DS, a flexible DS representation that can

model and smoothly transition between different compliant

behaviors around the reference trajectories provided from

demonstrations.

III. LOCALLY ACTIVE GLOBALLY STABLE

DYNAMICAL SYSTEMS (LAGS-DS)

Most state-of-the-art autonomous DS estimation ap-

proaches focus on solving the following problem: “Given a

set of reference trajectories {Ξ, Ξ̇} = {ξref
t , ξ̇

ref
t }t=1...TN

es-

timate the parameters of the non-linear function (1) such that

it captures the invariant features of the provided trajectories,

and is capable of generating motions that resemble them,

while ensuring that the target ξ∗ will always be reached.”

This can be summarized into two objectives: (i) mimicking

the motion pattern and (ii) converging to the attractor, as

shown in the left illustration of Fig. 2. Assume now that

we have a third objective; i.e. (iii) symmetrically converging

to the reference trajectory (or trajectories), as shown in the

right illustration of Fig. 2. This DS exhibits a behavior

inside the shaded regions which is qualitatively similar to a

stiffness attraction around a local reference trajectory. Once

the local attractor is reached it either converges to another

reference trajectory or ultimately to the global attractor. We

thus assume that the over-arching dynamical behavior of the

system is to (i) converge to the global attractor ξ∗, while

(ii) globally mimicking the motion pattern and (iii) locally

converging to the reference trajectories if desired.

In this paper, we propose a DS formulation and estimation

approach that is capable of generating such locally active

behaviors while ensuring global asymptotic stability. We

refer to this novel DS as the Locally Active Globally Stable

- DS (LAGS-DS). The main idea behind LAGS-DS is:

“Let fg be a global/nominal DS which should strictly con-

verge to the global attractor ξ∗g , as shown in Fig. 3 (top-left).

We also have a set of local dynamics f il for i = 1, . . . ,K,

as the ones shown in Fig. 3 (right column), that exhibit a

specific trajectory tracking behavior around a local attractor

ξ∗i 6= ξ∗g . Finally, we have a set of local activation regions

(the orange shaded areas that smoothly decay as they move

away from the reference trajectories), indicating where the

local DS f il should be active. The goal of a LAGS-DS is

to evolve according to fg where the local activation regions

are inactive. In the regions where a local activation region

is active, rather than following the integral curves from fg
the state evolves according to the locally active f il . In the

absence of perturbations, if the state is in a locally active

region it will reach the local attractor ξ∗i and then transit

back to fg or to another local DS, ultimately reaching the

global attractor ξ∗g .” In order to achieve this desiderata, we

propose the following LAGS-DS formulation:

ξ̇ = α(ξ)fg(ξ)
︸ ︷︷ ︸

Global Dynamics

limt→∞‖ξ − ξ∗

g‖= 0

+(1− α(ξ))

K∑

k=1

γk(ξ)f
k
l (hk(ξ), ξ)

︸ ︷︷ ︸

Set of K Local Dynamics

limt→∞‖ξ−ξ∗

k‖= 0if-hk(ξ) ≥ 1

limt→∞‖ξ‖= ∞ if hk(ξ) < 1

(12)

where fg(ξ) is a globally asymptotically stable dynamical

system that converges towards the global attractor ξ∗g and

fkl (ξ) represent the k-th local DS with local attractors ξ∗k

https://www.dropbox.com/s/t0fslakunyv2kuw/passive-global-ds.mp4?dl=0
https://www.dropbox.com/s/kjeqgnuebj50ww9/passive-lags-ds.mp4?dl=0
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Fig. 3: Illustration for constructing the Locally Active Globally Sta-
ble (LAGS)-DS. The top-left plot shows a Globally Asymptotically
Stable DS. The shaded regions represent the locally-active regions
where the system should follow some local dynamics. The right
column shows the 3 local dynamics corresponding to each region.

that symmetrically converge towards the local reference

trajectory. Following we describe the properties and roles

of the remaining terms in (12).

3) Global Dynamics: The global DS fg in (12) is a

non-linear DS that converges to the global attractor ξ∗g ,

while approximating the motion pattern generalized from the

reference trajectories. It is defined as a weighted combination

of linear DS with the following form:

fg(ξ) =

K∑

k=1

γk(ξ)(A
k
gξ + bkg) (13)

where Ak
g ∈ R

M×M and bkg ∈ R
M are the individual

linear systems matrices and bias terms and γk(ξ) is a state-

dependent mixing function. To ensure that (13) is globally

asymptotically stable at ξ∗g , the bias terms are defined as

bkg = −Ak
gξ

∗
g and the system matrices should meet the

following condition: (Ak
g)

TPg+PgA
k
g ≺ 0 for a symmetric

positive-definite Pg ∈ R
M×M matrix; and the mixing

function must be 0 < γk(ξ) ≤ 1 and
K∑

k=1

γk(ξ) = 1. These

conditions are derived from Lyapunov’s stability theorem,

detailed proof is provided in [14].

4) Activation Function: As depicted in Fig. 4, the ac-

tivation function α(ξ) indicates where the global and local

dynamics should be activated. The local dynamics are acti-

vated when α(ξ) < 1, which as shown, this only happens

in the compact sets χ = χ1 ∪ . . . ∪ χK for χk ⊂ R
M .

When 0 < α(ξ) < 1 a mixture of both local and global

dynamics are activated, while when 0 = α(ξ) solely the local

dynamics are active. On the other hand, in the converging

region C ⊂ R
M and the ball Br of radius r centered at ξ∗g

the global dynamics are active; i.e. α(ξ) = 1, which should

Fig. 4: State-space partitioning examples for activation function α(ξ) (15)

asymptotically converge to the global attractor ξ∗g . Since we

assume that each k-th locally active region is represented

by a compact set χk ⊂ R
M . χ can be represented by a

Gaussian Mixture Models (GMM), where each k-th Gaussian

distribution corresponds to each local compact set χk as,

p(ξ|θγ) =
K∑

k=1

πkN (ξ|µk,Σk) (14)

where µk and Σk are the mean and Covariance of the k-

th Gaussian distribution N (ξ|µk,Σk) that represents the

k-th compact set χk. The complete set of parameters

θγ = {πk,µ
k,Σk}Kk=1, where πk are the priors (or mixing

weights) of each Gaussian component, satisfying the con-

straint
K∑

k=1

πk = 1. Hence, we parametrize the α(ξ) as:

α(ξ) =
(

1− r(ξ)
)
(

1−
N (ξ|µk∗

, Σ̃k∗

)

N (µk∗ |µk∗

, Σ̃k∗)

)

+ r(ξ)

where

k∗ = arg max
k

{p(k|ξ, θγ)} for k∗ ∈ [1, . . . ,K]

(15)

The parameters θγ = {πk,µ
k,Σk}Kk=1 used for (15) are

also used in (13) to parametrize γk(ξ) with the a posteriori

probability for a k-th component; i.e. γ(ξ) = p(k|ξ, θγ),
this defines the contribution of each linear DS in (13). Σ̃

is a scaled Covariance matrix of the reference trajectory.

Moreover, by normalizing the Gaussian distribution with its

maximum value, we are flattening the probability values on

the reference trajectory such that regions where α(ξ) ≈ 0
are wider within the compact set χ. Finally, r(ξ) is a radial

exponential function centered at ξ∗g as,

r(ξ) = 1− exp
(

− c||ξ − ξ∗g||
)

(16)

where c is proportional to the radius r of Br. Intuitively, this

function enforces α(ξ) = 1 in the region within Br.

5) Local Dynamics: As shown in (12), the local DS

component fl(·) is a combination of local DS as follows:

fl(ξ) =

K∑

k=1

γk(ξ)f
k
l (hk(ξ), ξ) (17)

where each fkl (hk(ξ), ξ) denotes the dynamics that will

induce the desired behavior in the locally active regions.

Since χk encapsulates the local attractor ξ∗k, fkl (·) must

be designed such that in the composed system (12) the

sole equilibrium point is ξ∗g . To ensure the vanishing of

ξ∗k as an equilibrium point in the composed system and



Fig. 5: Illustrative 2D Example for non-linear LAGS-DS Exposition. (first) Non-linear Global-DS (second) LAGS-DS with symmetrically converging local behaviors and

non-linear Global-DS (third) Non-linear Global-DS (fourth) LAGS-DS with partial symmetrically converging local behaviors and non-linear Global-DS

provide a smooth transition between each χk and C and

χk → χj∀j 6= k, we formulate fkl (·) as a combination of a

locally active and a locally deflective DS via a partitioning

function hk(ξ). The locally active DS is defined as:

fkl,a(ξ) = Ak
l,aξ + bkl,a (18)

where Ak
l,a ∈ R

M×M defines the desired local behavior in

the compact set χk and bkl,a = −Ak
l,aξ

∗
k is the bias of the

linear system. To provide the stiffness-like behavior of our

desiderata; i.e. a symmetrically converging DS as in Fig. 3

we propose to parametrize Ak
l,a as follows,

Ak
l,a =Uk

l,aΛ
k
l,a(U

k
l,a)

T (19)

for Uk
l,a =

[

ξ
k

0 ξ0
k

⊥

]

, Λk
l,a =

[
(λ1

l,a)
k 0

0 (λ2
l,a)

k

]

(20)

where ξ0
k
, ξ0

k

⊥ ∈ R
M are orthonormal vectors indicating the

direction of the reference trajectory; i.e. (ξ0
k
) towards the

local attractor ξ∗k and the direction of convergence towards

the reference trajectory (ξ0
k

⊥). To ensure such symmetric

convergence to the reference trajectory, the eigenvalues must

comply with the following condition |κ(λ2
l,a)

k|> |(λ1
l,a)

k|,
where κ ∈ R+ is a positive value > 1 and indicates the

“stiffness” of the DS around the reference trajectory. We can

translate this notion of “stiffness” to the apparent stiffness

of the robot, by directly plugging (18) into (10) yields,

Ka,fk
l,a
(ξ) = −D(ξ)

∂fkl,a(ξ)

∂ξ

= −D(ξ)Uk
l,a

[
(λ1

l,a)
k 0

0 (λ2
l,a)

k

]

(Uk
l,a)

T

(21)

Hence, under a perturbation, (18) will pull the robot towards

the reference trajectory, in a spring-like manner with a

stiffness proportional to the eigenvalues Λk
l,a. Once the

robot has reached the local attractor ξ∗k after following the

symmetrically converging DS, the locally deflective DS takes

over, which ensures a transitioning to the next compact set

χj for j 6= k or to the converging region C, defined as:

fkl,d(ξ) = Ak
l,dξ + bkl,d. (22)

(22) is a repulsive DS centered at ξ∗k; i.e. Ak
l,d = λd

[
1 0
0 1

]

for λd > 0 and bl,d = Ak
l,dξ

∗
k. To combine (18) and (22) we

use a partition function hk(ξ) to indicate in which region

of the state-space each DS belongs to. hk(ξ) is a linear

hyper-plane that is parametrized by the reference trajectory

{ξref
t }t=1...TN

and attractor ξ∗l as follows:

hk(ξ) = wT
k ξ + bk,

wk =
µk − ξ∗k

||µk − ξ∗k||
and bk = 1−wT

k ξ
∗
k

(23)

where µk is the sample mean of the reference trajectory,

which is assumed to be the mean of the Gaussian component

for corresponding χk (23) can be considered as a simple

linear classifier, where hk(ξ) ≥ 1 denotes the region of the

‘+’ class, corresponding to the locally active DS and hk(ξ) <
1 denotes the region of the ‘-’ class, corresponding to the

locally deflective DS. We convert (23) to the following non-

negative function (using the same values for wk and bk):

hk(ξ) =
1

2
(wT

k ξ + bk + ||wT
k ξ + bk||) (24)

and propose the following combined DS:

fkl (hk(ξ), ξ) = h̃(ξ)fkl,a(ξ) + (1− h̃(ξ))fkl,d(ξ)

− λk(ξ)∇ξhk(ξ).

for h̃k(ξ) =

{

1 if hk(ξ) ≥ 1

hk(ξ) if hk(ξ) < 1

(25)

(25) modulates the two DS with the continuous partition

function h̃k(ξ) ∈ [0, 1], this allows for a smoother transition

between the active and deflective regions in the composed DS

(12). Furthermore, the term −λk(ξ)∇ξhk(ξ) adds velocity

components in the direction of the negative gradient of the

partition function modulated with an exponential radial basis

function, as (16) centered at the local attractor ξ∗k. The

addition of this term is necessary when in the composed

system (12) the direction of motion of the global DS fg(·)
and the local DS fkl (·) are either perpendicular or opposing

each other. In Fig. 5 we illustrate different combinations of

global and local DS. Furthermore, we also show illustrations

of non-linear reference trajectories composed of multiple

locally active models, combined with a non-linear global

DS. As can be seen, LAGS-DS is highly flexible in the sense

that it allows the modeling of a myriad of different dynamic

behaviors with the same formulation.

6) Global Asymptotic Stability Analysis of the Composed

System: To ensure the global asymptotic stability of (12) we

propose a complex Lyapunov candidate function which is

a combination of a global parametrized quadratic Lyapunov

function (QLF) and a set of locally active asymmetric QLF’s



as follows,

V (ξ) = (ξ − ξ∗g)
TPg(ξ − ξ∗g)

+

K∑

k=1

βk(ξ)(ξ − ξ∗g)
TPk

l (ξ − ξ∗k)
(26)

where,

βk(ξ) =

{

1 ∀ξ : (ξ − ξ∗g)
TPk

l (ξ − ξ∗k) ≥ 0

0 ∀ξ : (ξ − ξ∗g)
TPk

l (ξ − ξ∗k) < 0
(27)

with Pg,P
k
l ∈ R

M×M being positive definite matrices.

(27) is a simplification of the weighted sum of asymmet-

ric quadratic functions (WSAQF) proposed in [15] which

was used as a Control Lyapunov function. As opposed to

the original formulation, we restrict all P matrices to be

symmetric, such that we can use them to impose stability

constraints on our system matrices Ak
g ,A

k
l,a∀k = 1, . . . ,K.

The first term in (26) is a standard QLF centered at the global

attractor ξ∗g , while the second term is a set of asymmetric

local QLF shaped by the local attractors ξ∗k and activated via

βk(ξ) ∀k = 1, . . . ,K. The asymmetry, in this case, comes

from the relative error (ξ − ξ∗g)
T (ξ − ξ∗k). The structure of

(26) is tied to that of (12), namely the first term dictates the

stability for the global DS fg(·), while bounding the rate of

contraction of the local DS fkl (·) through the interaction with

the local asymmetric QLF’s. Sufficient conditions for global

asymptotic stability of (12) with the proposed Lyapunov

candidate function (26) are derived and provided in [14].

IV. LEARNING LAGS-DS FROM DEMONSTRATIONS

We briefly describe the learning approach for LAGS-DS.

The interested reader can refer to [14]. Our learning scheme

(as depicted in Fig. 6) is comprised of a three-step procedure.

Initially, we must discover the locally active regions from the

training data through locally linear trajectory clustering. This

is done via a Gaussian Mixture Model (GMM), where each

cluster is assumed to represent a locally linear trajectory.

Then, the set of K + 1 symmetric P matrices is learned

from the training data and the estimated local attractors via

a simplification of the constrained optimization problem pro-

posed in [15]. Finally, the set of system dynamics matrices

are estimated via a constrained optimization problem with the

derived Lyapunov stability conditions from (26) parametrized

by the the pre-learnt P matrices and the task requirements

defined by the user; i.e. the type of locally active dynamics.

V. SIMULATIONS AND NEXT STEPS

For a wiping task as the one illustrated in Fig. 1 we provide

2D simulations of a learned LAGS-DS from reference trajec-

tories as the ones shown in the bottom illustrations of Fig.

5 being executed with the passive-DS controller (9). This

simulation can be found in the following simulation-link-

3, where we can see a stiffness attraction to the reference

trajectory that corresponds to the “surface”. In simulation-

link-4 we show the behavior of the robot with a global-

DS without any locally active regions. As can be seen,

the robot simply follows the generalized motion pattern,

Training Data

Locally Linear 
Trajectory Clustering

Lyapunov Function 
Optimization

Dynamics Optimization

Local Task Requirements
(Type of Locally Active Dynamics)

Fig. 6: Schematic of the proposed LAGS-DS Learning Approach.

without coming back to the desired reference trajectory.

While LAGS-DS smoothly comes back to the reference

trajectory while allowing perturbations or changes in the

state-space without inducing any extra energy or instabilities

in the closed-loop system. Current efforts are targeted at

learning such LAGS-DS from real demonstrations focused

on the tasks presented in Fig. 1.
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